DOCUMENT RESUME

ED 341 728 TM 017 923

AUTHOR Mittag, Kathleen Cage

TITLE Correcting for Systematic Bias in Sample Estimates of

Population Variances: Why Do We Divide by n-1?

PUB DATE Jan 92

NOTE 31p.; Paper presented at the Annual Meeting of the

Southwest Educational Research Association (Houston,

TX, January-February 1992).

PUB TYPE Reports - Evaluative/Feasibility (142) --

Speeches/Conference Papers (150)

EDRS PRICE MF01/PC02 Plus Postage.

DESCRIPTORS College Mathematics; Computer Software; *Equations

(Mathematics); *Estimation (Mathematics); Higher Education; *Mathematical Models; Methods Courses; Monte Carlo Methods; Research Methodology; Research Needs; *Sampling; *Statistical Bias; Statistics

IDENTIFIERS *Population Parameters: *Variance (Statistical)

ABSTRACT

An important topic presented in introductory statistics courses is the estimation of population parameters using samples. Students learn that when estimating population variances using sample data, we always get an underestimate of the population variance if we divide by n rather than n-1. One implication of this correction is that the degree of bias gets smaller as the sample gets larger and larger. This paper explains the nature of bias and correction in the estimated variance and discusses the properties of a good estimator (unbiasedness, consistency, efficiency, and sufficiency). A BASIC computer program that is based on Monte Carlo methods is introduced, which can be used to teach students the concept of bias in estimating variance. The program is included in this paper. This type of treatment is needed because surprisingly few students or researchers understand this bias and why a correction for bias is needed. One table and three graphs summarize the analyses. A 10-item list of references is included, and two appendices present the computer program and five examples of its use. (Author/SLD)

FD341728

variance/bias

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

- 6 This document has been reproduced as received from the person or organization originating it.
- Minor changes have been made to improve reproduction quality
- Points of view or opinions stated in this document do not necessarily represent official OERI position or policy

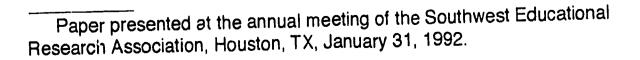
"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

KATHLEEN MITTAG

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

Correcting for Systematic Bias in Sample Estimates of Population Variances: Why Do We Divide by \underline{n} -1?

Kathleen Cage Mittag
Texas A&M University 77843-4232



ABSTRACT

An important topic presented in introductory statistics courses is the estimation of population parameters using samples. Students learn that when estimating population variances using sample data, we always get an underestimate of the population variance if we divide by <u>n</u> rather than by <u>n</u>-1. One implication of this correction is that the degree of bias gets smaller as the sample gets larger and larger. This paper explains the nature of bias and correction in the estimated variance and discusses the properties of a "good" estimator. A computer program was included to illustrate the bias concept and is included in this paper. This type of treatment is needed, because surprising few students or researchers understand this bias and why a correction for bias is needed.

An important topic presented in introductory statistics courses is the estimation of population parameters using samples. In many statistical studies it may be too costly, too time-consuming, or simply impossible to gather data from the entire population. Methods have been developed to estimate these population parameters and this paper will explain the nature of bias and correction in the estimated variance and discuss the properties of a "good" estimator. A BASIC computer program for an IBM PC is included in Appendix 1; this program can be used to teach students the concept of bias in estimating variance.

Variance is what is called a point estimate. A point estimate is computed from a given sample and has a single numerical value that acts as an approximation of the population parameter. Interval estimates (not discussed in this paper) specify limits between which population parameters fall with a given probability. These interval estimates are called confidence intervals.

Before discussing parameter estimates, a review of the basic computational statistics for population mean, variance, and standard deviation will be presented (Harnett, 1970; Ott, 1988). The mean, a measure of central tendency, is defined as:

$$\mu = E[\underline{x}] = (1/\underline{N}) \quad \Sigma \underline{x}_{\underline{i}} \quad \text{, where } \underline{N} = \text{number in population}$$

$$\underline{i} = 1 \tag{1}$$

The variance, a measure of variability, is defined as:

$$\sigma^2 = E[(\underline{x} - \mu)^2] = (1/\underline{N}) \Sigma (\underline{x} - \mu)^2$$
 (2)

The standard deviation, a measure of variability, is defined as the square root of the variance. It is used because the variance is in a squared metric, and people are more comfortable thinking in units of dollars rather than squared dollars, or IQ rather than squared IQ, and so forth.

$$\sigma = \sqrt{\langle \sigma^2 \rangle} \tag{3}$$

Since population data are seldom available, it is often necessary to estimate parameters using sample data. There are four criteria which are considered when deciding if an estimator is a "good" estimator. These criteria are unbiasedness, consistency, efficiency, and sufficiency (Harnett, 1970; Khazanie, 1990). The cost of making incorrect estimates from sample data should be minimized; therefore, it is very important to chose the correct estimation procedure. In this paper, parameters will be referred to as θ . Parameter estimates will be referred to as θ . An example is if $\theta = \sigma^2$, then $\theta = s^2$.

UNBIASEDNESS

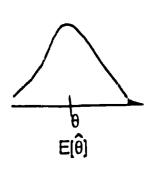
Unbiasedness is the first property of a "good" estimator. Carl Gauss is given credit for first presenting this concept. Unbiasedness is defined by Harnett (1970, p. 188) as the following:

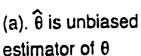
An estimator is said to be unbiased if the expected value of the estimator is equal to the parameter being estimated, or if

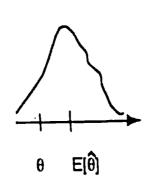
$$\mathsf{E}[\theta] = \theta \tag{4}$$

Ideally, the bias should be equal zero. A biased estimator will either underestimate (Figure 1(c)) or overestimate (Figure 1(b)) the parameter θ . If an estimator is "good" and several samples are taken from a population, then the mean value of these samples should be close to the parameter value (Figure 1(a)). Khazanie (1990) illustrated these unbiasedness concepts as follows:

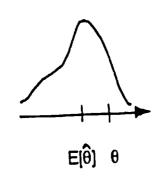
FIGURE 1
Curves represent sampling distributions of θ







(b). $\hat{\theta}$ overestimates



(c). $\widehat{\theta}$ underestimates θ

The sample mean (\underline{M}), the most widely used estimator, is an unbiased estimator of μ . This fact can be shown as follows (Harnett, 1970, p. 159).

Define
$$\underline{M} = (1/\underline{n}) (\underline{x}_1 + \underline{x}_2 + \dots + \underline{x}_{\underline{n}})$$

$$E[\underline{M}] = E[(1/\underline{n}) (\underline{x}_1 + \underline{x}_2 + \dots + \underline{x}_{\underline{n}})]$$

$$= 1/\underline{n} E[\underline{x}_1 + \underline{x}_2 + \dots + \underline{x}_{\underline{n}}]$$

$$= 1/\underline{n} (E[\underline{x}_1] + E[\underline{x}_2] + \dots + E[\underline{x}_{\underline{n}}])$$

$$= 1/\underline{n} (\mu + \mu + \dots + \mu$$
(5)

=
$$1/\underline{n}$$
 ($\underline{n}\mu$)

 $\mu M = \mu$

$$\therefore \ \mathsf{E}[\underline{\mathsf{M}}] = \mu \tag{6}$$

It would be nice if the sample variance ($s^2 = 1/\underline{n} [\Sigma (\underline{x}-\underline{M})^2]$), the second most widely used estimator, was also an unbiased estimator of the population variance (σ^2), but s^2 is **not** an unbiased estimator of σ^2 ($E[s^2] \neq \sigma^2$) (Harnett, 1970). It is a fact that s^2 always underestimates σ^2 by a factor of (\underline{n} -1)/ \underline{n} . The following relationship results from that fact:

$$E[s^2] = \sigma^2 \{ (\underline{n} - 1)/\underline{n} \}$$
 (7)

or by rewriting (7)

$$\mathsf{E}[\mathsf{s}^2] = \sigma^2 - \sigma^2 / \underline{\mathsf{n}} \tag{8}$$

From formula (8) it can be seen that the bias is equal σ^2/\underline{n} . If \underline{n} is large, then σ^2/\underline{n} becomes very small. That fact reinforces the idea that it is important to have a large sample size, if possible. The value of σ^2/\underline{n} can be important, as illustrated in the next example. Assume that the population variance is $\sigma^2 = 50$ and calculate the estimate variance, s^2 , from samples of size $\underline{n} = 5$, $\underline{n} = 10$, and $\underline{n} = 20$. The estimate from $\underline{n} = 5$ will be 20% too low, since

$$E[s^2] = 50 - (50/5) = 40.$$

The estimate from $\underline{n}=10$ would be 10% too low and the estimate from $\underline{n}=20$ would be 5% too low. This illustrates how sample size effects the underestimates of variance.

It is very easy to correct for this bias in the variance formula (7). All that needs to be done is to multiply formula (7) on both sides by the reciprocal of $(\underline{n}-1)/\underline{n}$, which would be $\underline{n}/(\underline{n}-1)$ (Harnett, 1970).

$$\{\underline{\mathbf{n}}/(\underline{\mathbf{n}}-1)\} \ \mathsf{E}[s^2] = \{\underline{\mathbf{n}}/(\underline{\mathbf{n}}-1)\} \{(1/\underline{\mathbf{n}}) \ \Sigma \ (\underline{\mathbf{x}}-\underline{\mathbf{M}})^2\}$$

$$\mathsf{S}^2 = \{1/(\underline{\mathbf{n}}-1)\} \ \Sigma \ (\underline{\mathbf{x}}-\underline{\mathbf{M}})^2$$

$$(9)$$

The formula (9) will be referred to as the **unbiased estimate of \sigma^2** and denoted by S^2 .

Formula (7) is essential in deriving the unbiased variance estimate; therefore, the proof of formula (7) in included in this paper. The proof is as follows (Harnett, 1970):

In the first step of the proof, $(\underline{x}-\mu)$ - $(\underline{M}-\mu)$ is substituted for the term $(\underline{x}-\underline{M})$, since they are equivalent mathematically.

$$E[s^{2}] = E[(1/\underline{n}) \sum (\underline{x} - \underline{M})^{2}]$$
$$= (1/\underline{n}) E[\sum \{(\underline{x} - \mu) - (\underline{M} - \mu)\}^{2}]$$

Note: Since $(\underline{a}+\underline{b})^2 = \underline{a}^2 + 2\underline{a}\underline{b} + \underline{b}^2$, the next step follows.

$$= (1/\underline{\mathbf{n}}) \ \mathsf{E}[\Sigma(\underline{\mathsf{x}} \boldsymbol{\cdot} \boldsymbol{\mu})^2] \ \boldsymbol{\cdot} \ (2/\underline{\mathbf{n}}) \ \mathsf{E}[\Sigma(\underline{\mathsf{M}} \boldsymbol{\cdot} \boldsymbol{\mu})(\underline{\mathsf{x}} \boldsymbol{\cdot} \boldsymbol{\mu})] \ \boldsymbol{\cdot} \ (1/\underline{\mathbf{n}}) \ \mathsf{E}[\Sigma(\underline{\mathsf{M}} \boldsymbol{\cdot} \boldsymbol{\mu})^2]$$

Note: In the second term, $\sum (\underline{M} \cdot \mu)$ is a constant, so it can be taken outside the expectation sign.

$$= (1/\underline{\mathbf{n}}) \ \mathsf{E}[\Sigma(\underline{\mathsf{x}} \boldsymbol{\cdot} \boldsymbol{\mu})^2] \ \boldsymbol{\cdot} \ (2/\underline{\mathbf{n}}) \ \Sigma(\underline{\mathsf{M}} \boldsymbol{\cdot} \boldsymbol{\mu}) \ \mathsf{E}[(\underline{\mathsf{x}} \boldsymbol{\cdot} \boldsymbol{\mu})] \ \boldsymbol{\cdot} \ (1/\underline{\mathbf{n}}) \ \mathsf{E}[\Sigma(\underline{\mathsf{M}} \boldsymbol{\cdot} \boldsymbol{\mu})^2]$$

Note: Let
$$E[(\underline{x}-\mu)] = (\underline{M}-\mu)$$

Let $E[(\underline{x}-\mu)^2] = \sigma^2$
Let $E[(\underline{M}-\mu)^2] = \sigma^2/\underline{n}$
 $= (1/\underline{n}) \Sigma \sigma^2 - (2/\underline{n}) \Sigma (\underline{M}-\mu) (\underline{M}-\mu) + (1/\underline{n}) \Sigma (\sigma^2/\underline{n})$
 $= (1/\underline{n}) \Sigma \sigma^2 - (2/\underline{n}) \Sigma (\underline{M}-\mu)^2 + (1/\underline{n}) \Sigma (\sigma^2/\underline{n})$
 $= \sigma^2 - 2(\sigma^2/\underline{n}) + (\sigma^2/\underline{n})$
 $= \sigma^2 (\underline{n}/\underline{n} - 2/\underline{n} + 1/\underline{n})$
 $= \sigma^2((\underline{n}-1)/\underline{n})$
 $\therefore E[s^2] = \sigma^2((\underline{n}-1)/\underline{n})$

Unbiasedness has one weakness in that it requires only the average value of $\widehat{\theta}$ equal θ . The values of $\widehat{\theta}$ can be very far from θ and still average θ . The next property, consistency, takes the variability of $\widehat{\theta}$ into consideration.

CONSISTENCY

The definition and properties of consistency given by Harnett (1970, p. 191) are:

Definition: An estimator is said to be consistent if it yields estimates which approach the population parameter being estimated as \underline{n} becomes larger.

Properties: 1). Var
$$(\widehat{\theta}) \Rightarrow 0$$
 as $\underline{n} \Rightarrow \infty$
2). $\widehat{\theta}$ is unbiased ($E[\widehat{\theta}] = \theta$)

Rahman (1968, p. 301) emphasized that "estimates" can be both consistent and unbiased, neither, or one or the other in the following quotation:

Nevertheless, it is to be emphasized that consistency is a very different concept from unbiasedness, and it is also derived from a different theory of estimation. (Unbiasedness is derived from the theory of least squares.) As such, a consistent estimate may or may not be unbiased. Conversely, an unbiased estimate may or may not be consistent. Despite this, there exist estimates (such as the sample mean) which are both unbiased and consistent.

R. A. Fisher introduced the consistency property in the 1920's.

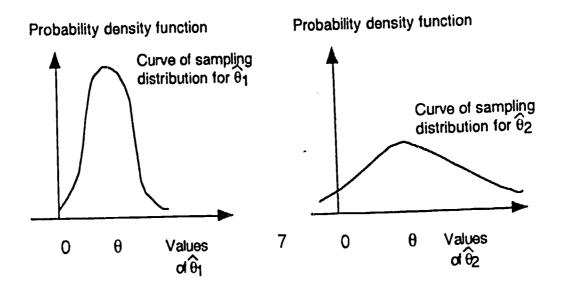
EFFICIENCY

The third property, efficiency, concerns the reliability of the estimate of θ for a given sample size. Khazanie (1990, p. 303) defined efficiency and illustrated the concept of efficiency as follows:

If $\widehat{\theta}_1$ and $\widehat{\theta}_2$ are two unbiased estimators of θ , and $\widehat{\theta}_1$ is *more* efficient than $\widehat{\theta}_2$ if the variance of the sampling distribution of $\widehat{\theta}_1$ is less than the variance of the sampling distribution of $\widehat{\theta}_2$.

FIGURE 2

FIGURE 3



Since the variance in Figure 2 is less than the variance in Figure 3, it can be said that θ_1 is more efficient than θ_2 . The relative efficiency, used in measuring efficiency, is the ratio of the variances of two unbiased estimators.

SUFFICIENCY

Sufficiency is the last property of estimators. Harnett (1970, p. 193) defined sufficiency as:

An estimator is said to be sufficient if it utilizes all of the information about the population parameter that is contained in the sample data.

The range is not sufficient because it only considers the highest and lowest data points. The median is not sufficient unless only ranked observations are available. The sample mean, $\underline{\mathbf{M}}$, is sufficient as an estimator of μ since it uses all the observed values. The variance is also sufficient since the sample mean is used in calculating the variance.

COMPUTER EXAMPLE

A BASIC computer program, written by Groeneveld (1979) and adapted by Bruce Thompson, was used to demonstrate this bias concept. The program is presented in Appendix A. A Monte-Carlo technique, defined by Danesh (1987, p. 30) as "a system of techniques which enables us to model physical systems conveniently in a computer", was used in this program. The samples were taken from a standard normal distribution (mean=0 and standard deviation=1.) The user is requested to declare a sample size "n" and the number of samples to be drawn. Since the population variance is 1.0, and

variance equals the sum-of-squares/(\underline{n} -1) for a sample, the expected value for the sum-of-squares(SOS) is \underline{n} -1. The mean of the SOS estimates over repeated samples should equal \underline{n} -1. The estimated variances should be closer to the population variance (σ^2 =1) as \underline{n} increases and as the number of repeated samples increases.

Examples using the program are included in Appendix B. Table 1 presents a summary of the examples presented in Appendix B. Referring to Table 1, the deviation between the expected SOS and the actual SOS tends to get smaller as either sample size or number of samples increases, as expected.

CONCLUSION

In summary, the four properties, unbiasedness, consistency, efficiency, and sufficiency, explain criteria for choosing an estimator. The properties do not specify how to find an estimator which will have some or all these properties. There are several methods, such as the method of moments, the method of maximum likelihood, and the method of least squares, which can be used to determine "good" estimators. They are not discussed in this paper and would be excellent research topics for future papers.

REFERENCES

- Danesh, I. (1987). Incorporation of Monte-Carlo computer techniques into science and mathematics education. *Journal of Computers in Mathematics and Science Education*, Summer 1987, 30-36.
- Eves, H. (1990). An introduction to the history of mathematics. Philadelphia: Saunders College Publishing.
- Groeneveld, R. A. (1979). An introduction to probability and statistics using BASIC. New York: Marcel Dekker, Inc.
- Harnett, D. L. (1970). *Introduction to statistical methods*. Reading, Massachusetts: Addison-Wesley Publishing Company.
- Khazanie, R. (1990). Elementary statistics in a world of applications. HarperCollins Publishers, Inc.
- Ott, L. (1988). An introduction to statistical methods and data analysis. Boston: PWS-Kent Publishing Company.
- Rahman, N. A. (1968). A course in theoretical statistics. New York: Hafner Publishing Company.
- Steel, R. G. D. & Torrie, J. H. (1960). *Principles and procedures of statistics*. New York: McGraw-Hill Book Company, Inc.
- Stigler, S. M. (1986). *The history of statistics*. Cambridge, Massachusetts: The Belknap Press of Harvard University Press.
- Thompson, B. (1992). Adapted BASIC computer program written by Groeneveld.

TABLE 1

Example 1	Example 2
n=5	n=10
k=50	k=50
M SOS= 3.488033	M SOS= 9.637742
d=(n-1) - M SOS	d=(n-1) - M SOS
d1= 0.511967	d ₂ = -0.637742

Example 3	Example 4	Example 5
n=5	n=10	n=20
k=100	k=100	k=100
M SOS= 3.735797	M SOS= 8.714042	<u>M</u> SOS= 18.97739
d=(n-1) - <u>M</u> SOS	d=(n-1) - <u>M</u> SOS	d=(n-1) - <u>M</u> SOS
da= 0.264203	d4= 0.285958	d5= 0.02261


```
10 REM PROGRAM SDMONTE.BAS
          ADAPTED BY BRUCE THOMPSON 1/92
20 REM
22 OPEN "O",1,"C:SDMONTE.OUT"
24 PRINT#1," SDMONTE.OUT FROM SDMONTE.BAS":SOSTOT=0:SOS=0
                                                         THOMPSON
                           PROGRAM ADAPTED BY BRUCE
    PRINT#1."
1/92":PRINT#1," "
30 DIM F(35), BT(2000):CLS
31 A$=RIGHT$(TIME$,2):S1=VAL(LEFT$(A$,1)):S2=VAL(RIGHT$(A$,1))
33 A=S1^4+S2^3:IF (A*3)<32767 THEN A=A*3
34 IF S1<5 THEN A=A*-1
36 RANDOMIZE A:PRINT#1," RANDOM NUMBER SEED WAS "; A
40 FOR I = 1 TO 35
50 LET F(I)=0
60 NEXT I
70 PRINT "WHAT IS SAMPLE"; " SIZE?"
82 INPUT N:PRINT#1," SAMPLE SIZE REQUESTED WAS ";N
90 PRINT "HOW MANY";" REPITIONS?"
100 INPUT K:PRINT#1," REPITIONS OF SAMPLING REQUESTED WAS ";K
110 FOR J=1 TO K
112 PRINT#1," "
120 FOR I=1 TO N
130 GOSUB 410
140 LET S=S+Z:LET BT(I)=Z
152 PRINT#1," ";J;" ";I;" ";Z
160 NEXT I
170 LET X1=S/N
172 FOR L=1 TO N
173 LET BT(L)=BT(L)-X1:LET SOS=SOS+(BT(L)^2)
174 CLS:PRINT" ":PRINT" ":PRINT" ";J;" ";L
175 NEXT L
178 SOSTOT=SOS+SOSTOT
180 LET V=(SOS)/(N-1)
182 PRINT#1," SAMPLE"; J:PRINT#1,"
                                     MEAN=";X1
                 SOS="; SOS;" N="; N;" CORRECTED V="; V
184 PRINT#1,"
190 FOR C=1 TO 30
200 IF V>C/5 THEN 230
     LET F(C) = F(C) + 1/K
210
220 GOTO 260
230 IF C<30 THEN 250
240 LET F(C)=F(C)+1/K
250 NEXT C
260 LET S=0
272 LET SOS=0
280 NEXT J
290 PRINT#1," "
300 PRINT#1, "FREQUENCY "; "DISTRIBUTION OF"; " VARIANCES"
 310 PRINT#1," "
320 PRINT#1,"LOWER END";" UPPER END";" REL FREQ"
 330 FOR C=1 TO 30
 340 PRINT#1, (C-1)/5, C/5, F(C)
 350 LET T=T+F(C)
 360 IF T>=0.999999 THEN 380
 370 NEXT C
 380 PRINT#1," ":SOSTOT=SOSTOT/K
```


- 390 PRINT#1, "TOTAL FREQ= ";T:PRINT#1," "
 392 PRINT#1, "THERE WERE";K;" SAMPLES OF SIZE";N
 394 PRINT#1, "THE AVERAGE SOS SHOULD EQUAL N-1, OR";N-1
 396 PRINT#1, "THE MEAN SOS OVER";K;" SAMPLES WAS";SOSTOT
- 400 CLOSE #1:GOTO 450
- 410 LET Z1=SQR(-2*LOG(RND))
- 420 LET Z2=6.2831853*RND
- 430 LET Z=Z1*COS(Z2)
- 440 RETURN
- 450 END

EXAMPLE 1

```
SDMONTE.OUT FROM SDMONTE.BAS
FROGRAM ADAPTED BY BRUCE THOMPSON 1/92
```

RANDOM NUMBER SEED WAS -6

```
SAMPLE SIZE REQUESTED WAS
REPITIONS OF SAMPLING REQUESTED WAS 50
    1 .3824551
 1
    2 -.1424869
 1
        2.041772
     3
       1.488733
 1
         .6958976
 1
     5
SAMPLE 1
   MEAN= .8932742
   SOS= 3.046314 N= 5 CORRECTED V= .7615785
    1
         1.907196
    2
 2
         .8472512
 2
        1.158412
        .3580843
 2
 2
     5
        .7014885
SAMPLE 2
   MEAN= .9944864
   SOS= 1.372444 N= 5 CORRECTED V= .343111
     1 -1.679582
 3
     2
         7.326465E-02
 3
     3 -.1711201
     4 -.9935407
 3
     5
         .2426568
SAMPLE 3
   MEAN = -.5056642
   SOS= 2.623169 N= 5 CORRECTED V= .6557923
        .8721311
         .2723533
     2
 4
       -.6668983
     3
        -.4930475
     5
         7.062878E-02
 4
SAMPLE 4
   MEAN= 1.103349E-02
   SOS= 1.527018 N= 5 CORRECTED V= .3817545
     1 -.9698443
 5
 5
     2 -1.264896
 5
     3 -.3550073
     4 -1.034422
 5
       .3254847
 5
     5
SAMPLE 5
   MEAN=-.659737
   SOS= 1.666295 N= 5 CORRECTED V= .4165736
 6 1 4.348573E-02
 6 2 .8014679
```



```
42
    3 -2.025705
  42
    4 .1316303
          .4965793
  42
     5
 SAMPLE 42
   MEAN=-.3133354
   SOS= 5.464818 N= 5 CORRECTED V= 1.366204
  43
     1 .7499443
  43
     2 -.2970279
  43
      3
          1.494941
  43
     4 -1.512662
  43
      5 -1.689349
SAMPLE 43
   MEAN=-.2508307
    SOS= 7.712958 N= 5 CORRECTED V= 1.928239
         1.187843E-02
  44
  44 2 -.3291145
  44 3
         .3903748
  44
          .1354732
  44
     5 -1.782711
 SAMPLE 44
   MEAN=-.3148198
    SOS= 2.961703 N= 5 CORRECTED V= .7404257
      1 -1.365308
  45
  45
       2 -.8296563
  45
      3 -1.539058
  45
      4 -.1202354
  45
       5 -.1267986
 SAMPLE 45
    MEAN=-.7962112
    SOS= 1.781867 N= 5 CORRECTED V= .4454668
  46
       1 .1714068
  46
          .5069509
      3 -.125097
  46
  46
      4 -.716944
          .6539771
  46
      5
 SAMPLE 46
    MEAN= 9.805878E-02
    SOS= 1.195646 N= 5 CORRECTED V= .2989115
  47
       1 -.8491488
  47
      2 .3735188
  47
       3
          .5075592
  47
      4 -.1229607
          .4854995
  47
       5
 SAMPLE 47
    MEAN= 7.889358E-02
    SOS= 1.337894 N= 5 CORRECTED V= .3344736
     1 -.3869946
  48
  48 2 .111407
```



```
48 3 -1.337579
48 4 -.43302
   5 -3.649609E-02
48
SAMPLE 48
  MEAN=-.4165366
  SOS= 1.272619 N= 5 CORRECTED V= .3181548
49 1 2.246834
49 2 .9241474
   3 -1.300303
 49
49 4 .3597518
 49 5 -1.010265
SAMPLE 49
  MEAN= .244033
  SOS= 8.445396 N= 5 CORRECTED V= 2.111349
50 1 -1.951918
50 2 -.3059856
50 3 4.825774E-02
    4 -.9457846
50 5 .8500972
SAMPLE 50
  MEAN=-.4610666
  SOS= 4.460201 N= 5 CORRECTED V= 1.11505
```

FREQUENCY DISTRIBUTION OF VARIANCES

LOWER EN	ND UPPER END	REL FREQ
0	. 2	.04
. 2	. 4	.18
. 4	.6	.16
. 6	.8	.2
. 8	1	.08
1	1.2	9.99999E-02
1.2	1.4	.06
1.4	1.6	.04
1.6	1.8	.04
1.8	2	.06
2	2.2	.04

TOTAL FREQ= .9999999

THERE WERE 50 SAMPLES OF SIZE 5
THE AVERAGE SOS SHOULD EQUAL N-1, OR 4
THE MEAN SOS OVER 50 SAMPLES WAS 3.488033

SDMONTE.OUT FROM SDMONTE.BAS PROGRAM ADAPTED BY BRUCE THOMPSON 1/92

RANDOM NUMBER SEED WAS -1797

```
SAMPLE SIZE REQUESTED WAS 10
REPITIONS OF SAMPLING REQUESTED WAS 50
         1.051235
 1
     1
     2
        -.9002343
 1
 1
     3
        -.2513088
         .0783185
 1
 1
     5
        -.6785592
 1
     6
        -.6381989
 1
     7
        1.15251
 1
     8
         .5070424
 1
     9
        -.4532294
 1
     10 -2.256471
SAMPLE 1
   MEAN=-.2388895
   SOS= 9.164312 N= 10 CORRECTED V= 1.018257
 2
     1
        -.4582848
 2
     2
        -.8816874
 2
     3
        -1.155471
 2
         .2466978
     4
 2
     5
         .6125487
 2
     6
         2.679835
 2
     7
         .1570069
 2
     8
         .6641071
 2
     9
         1.849959
 2
     10 -1.624337E-02
SAMPLE 2
   MEAN= .3698468
   SOS= 12.46053 N= 10 CORRECTED V= 1.384504
 3
     1
         1.079786
 3
     2
        -.2666005
 3
     3
        -2.225359
 3
     4
         .9149314
 3
     5
        -1.753282
 3
     6
        -.6705306
 3
     7
         .7402433
 3
     8
        -.5050923
 3
     9
        -.9221319
 3
     10
          1.060137
SAMPLE 3
   MEAN = -.2547899
   SOS= 12.67806 N- 10 CORRECTED V= 1.408674
          .4536214
     1
 4
     2
        -.2034944
 4
     3
         1.652726
 4
     4
         .7850095
     5 -.7103371
```



```
MEAN=-.2022671
   SOS= 14.69924 N= 10 CORRECTED V= 1.633249
 47
      1
           .4181669
 47
      2
           .1474964
         -1.929325
 47
      3
           1.757017
 47
      4
 47
      5
          1.599262
 47
          -1.337078
      б
      7
 47
          -.3112722
 47
      8
           1.392713
          -.4241802
 47
      9
 47
      10
            1.896842
SAMPLE 47
   MEAN= .3209643
   SOS= 16.13574 N= 10 CORRECTED V= 1.792859
 48
      1
           1.330566
 48
      2
           .1593396
 48
      3
          -.6979415
 48
      4
           1.124701
 48
      5
          -.8490906
 48
          -.7295691
      6
 48
      7
           1.155638
 48
      8
          -1.440681
 48
      9
           6.421478E-02
 48
      10
         -.6832205
SAMPLE 48
   MEAN = -5.660436E - 02
   SOS= 8.651028 N= 10 CORRECTED V= .9612252
 49
      1
         -.9737036
 49
      2
          -1.862909E-02
 49
      3
           .64833
 49
      4
           .6114015
          -.9269398
 49
      5
 49
      6
          -1.574742
 49
      7
           .1073893
 49
      8
           .9131689
 49
      9
          -2.633728
 49
      10
            1.323498
SAMPLE 49
   MEAN=-.2523954
   SOS= 13.97816 N= 10 CORRECTED V= 1.553129
 50
           .9240689
      1
 50
      2
           1.519857
 50
      3
           .4949289
 50
      4
           1.281391
 50
      5
          -.3697424
 50
      6
           .1431352
 50
      7
          -.5908048
 50
      8
          -6.102137E-02
 50
      9
           1.623422
```


50 10 -.3006039 SAMPLE 50 MEAN= .466463 SOS= 6.110741 N= 10 CORRECTED V= .6789712

FREQUENCY DISTRIBUTION OF VARIANCES

LOWER EN	D UPPER END	REL FREQ
0	. 2	0
. 2	. 4	.06
. 4	.6	.08
. 6	. 8	.16
. 8	1	9.99999E-02
1	1.2	.24
1.2	1.4	.14
1.4	1.6	.12
1.6	1.8	9.99999E-02

TOTAL FREQ= .9999999

THERE WERE 50 SAMPLES OF SIZE 10
THE AVERAGE SOS SHOULD EQUAL N-1, OR 9
THE MEAN SOS OVER 50 SAMPLES WAS 9.637742

SDMONTE.OUT FROM SDMONTE.BAS PROGRAM ADAPTED BY BRUCE THOMPSON 1/92

```
RANDOM NUMBER SEED WAS -27
SAMPLE SIZE REQUESTED WAS 5
REPITIONS OF SAMPLING REQUESTED WAS 100
   1 1.06045
 1
 1 2 -.6737673
 1
    3
        .8599736
    4 -.0450945
    5 -.7684606
 1
SAMPLE 1
  MEAN= 8.662023E-02
   SOS= 2.873121 N= 5 CORRECTED V= .7182803
 2 1 -1.124
        .8294068
 2
    2
 2
    3 -.3992898
 2
     4 -.2065119
     5 -.7937864
 2
SAMPLE 2
  MEAN=-.3388363
   SOS= 2.209418 N= 5 CORRECTED V= .5523545
    1 -.1758775
 3
     2 -.1646739
 3
       -1.631368
     4 -1.158088
 3
     5 -.4536565
SAMPLE 3
   MEAN=-.7167326
   SOS= 1.697854 N= 5 CORRECTED V= .4244635
       -.615754
     1
     2
        1.162127
 4
        -.8984321
        .6660625
 4
     4
     5
 4
         .4664898
SAMPLE 4
   MEAN= .1560986
   SOS= 3.07629 N= 5 CORRECTED V= .7690726
       .4817174
     1
 5
    2 -.96671
 5
     3 -.9364807
 5
        -.4222362
 5
     5 -1.167957
SAMPLE 5
   MEAN = -.6023333
   SOS= 1.771956 N= 5 CORRECTED V= .442989
```


6 1

1.121774

6 2 -.3654257

```
3 7.596554E-02
    4 -.8280181
 96
     5 .4372302
 96
SAMPLE 96
   MEAN= 7.842743E-02
   SOS= 2.886822 N= 5 CORRECTED V= .7217056
 97 1 .4087028
     2 -1.486042
 97
     3 1.133285
 97
      4 -.4592905
 97
      5 -.5068236
 97
SAMPLE 97
   MEAN=-.1820338
   SOS= 3.96183 N= 5 CORRECTED V= .9904574
    1 -.4690478
 98
 98
      2 -4.930116E-02
    3 .3568874
 98
 98
      4 -.4764273
      5 -.223879
 98
SAMPLE 98
   MEAN=-.1723536
   SOS= .478381 N= 5 CORRECTED V= .1195952
 99
    1 -1.915549
         .1783297
 99
     2
 99 3
         1.594652
 99 4
         .1082491
 99
     5 -1.782255
SAMPLE 99
   MEAN=-.3633146
   SOS= 8.772204 N= 5 CORRECTED V= 2.193051
 100
      1 -.131384
 100 2 -.4776703
      3
         -.1754611
 100
       4
         -2.606694
 100
 100 5 -.4609728
SAMPLE 100
   MEAN=-.7704365
   SOS= 4.315707 N= 5 CORRECTED V= 1.078927
FREQUENCY DISTRIBUTION OF VARIANCES
```

LOWER	END	UPPER END	REL FREQ
0		. 2	.06
. 2		. 4	.17
. 4		.6	.15
.6		. 8	.17
.8		1	.13
1		1.2	.08
1.2		1.4	.04
1.4		1.6	.04

1.8	.01
2	.04
2.2	.04
2.4	.03
2.6	.01
2.8	.01
3	.01
3.2	0
3.4	0
	0
	0
4	.01
	2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

TOTAL FREQ= 1

THERE WERE 100 SAMPLES OF SIZE 5
THE AVERAGE SOS SHOULD EQUAL N-1, OR 4
THE MEAN SOS OVER 100 SAMPLES WAS 3.735797

SDMONTE.OUT FROM SDMONTE.BAS PROGRAM ADAPTED BY BRUCE THOMPSON 1/92

RANDOM NUMBER SEED WAS -849

```
SAMPLE SIZE REQUESTED WAS 10
REPITIONS OF SAMPLING REQUESTED WAS 100
        1.160466
 1
     1
 1
     2
        -.7973283
 1
     3
        -.5663562
 1
        -.3749902
 1
       -.7441588
 1
     6
        .3732632
 1
     7
        -.4666904
 1
     8
        3.724473E-02
         .3368249
 1
     9
 1
     10
         -.7284982
SAMPLE 1
   MEAN=-.1770223
   SOS= 3.686867 N= 10 CORRECTED V= .4096519
        .254492
 2
 2
        -1.785408
 2
     3
        .2480187
 2
       .5004284
 2
     5
         .7799193
         .2109243
 2
     6
 2
     7
         .166352
 2
     8 -.8893287
         .295921
 2
     9
 2
     10 -.1821375
SAMPLE 2
   MEAN=-4.008183E-02
   SOS= 5.140408 N= 10 CORRECTED V= .5711564
     1
         .1701517
 3
     2
         .1300232
 3
     3
        1.574309
 3
     4
         .3778581
 3
     5
         1.167504
 3
     6
       .5027012
 3
     7
         .5825673
 3
     8
       -.2600921
 3
     9
         .182062
 3
     10 -.472255
SAMPLE 3
   MEAN= .3954829
   SOS= 3.381993 N= 10 CORRECTED V= .375777
     1
       -.2924565
         .5006929
 4
     2
 4
     3
        -1.804697
 4
     4
         .8749314
    5 1.148781
```



```
.8007315
97
97
      2
         -.139967
97
      3
         -.8739483
97
         -1.636612
      5
          1.432342
97
          1.018281
97
      6
      7
 97
         -1.181956
         -.4883819
 97
      8
          1.819207
 97
      9
      10
           1.826599
 97
SAMPLE 97
   MEAN= .2576295
   SOS= 14.80933 N= 10 CORRECTED V= 1.645481
          .2663514
 98
 98
         -.2190415
      2
 98
      3
         -.9627011
 98
         -1.614677
 98
      5
         -.5506749
 98
         -1.043779
      6
      7
          -3.721359E-02
 98
           .9502709
 98
      8
      9
           1.157725
 98
      10 -.3245938
 98
SAMPLE 98
   MEAN=-.2378333
   SOS= 6.830055 N= 10 CORRECTED V= .758895
           6.554232E-02
 99
 99
      2
           2.068519
 99
       3
          -.1749714
 99
       4
          -1.493213
 99
      5
          -.7910946
 99
       6
           .3286946
 99
       7
          -.3516004
 99
       8
           1.229989
           .1529801
 99
       9
           -.2458877
       10
 99
SAMPLE 99
   MEAN= 7.889577E-02
   SOS= 8.935349 N= 10 CORRECTED V= .9928165
 100
           -1.596557
        1
 100
        2
            .6865393
        3
            .7121635
 100
        4
            1.036351
 100
 100
        5
            1.284166
 100
        6
            .5735763
            .8916395
        7
 100
        8
           -.613827
 100
 100
        9
           -.4905225
 100
        10
            -.6363868
SAMPLE 100
```


MEAN= .1847142 SOS= 8.055815 N= 10 CORRECTED V= .8950905

FREQUENCY DISTRIBUTION OF VARIANCES

LOWER END	UPPER END	REL FREQ
0	.2	0
.2	. 4	8.99999E-02
.4	.6	.19
.6	.8	.13
.8	1	.15
1	1.2	.15
1.2	1.4	8.99999E-02
1.4	1.6	.07
1.6	1.8	.08
1.8	2	.04
2	2.2	.01

TOTAL FREQ= .9999999

THERE WERE 100 SAMPLES OF SIZE 10
THE AVERAGE SOS SHOULD EQUAL N-1, OR 9
THE MEAN SOS OVER 100 SAMPLES WAS 8.714042


```
SDMONTE.OUT FROM SDMONTE.BAS
PROGRAM ADAPTED BY BRUCE THOMPSON 1/92
```

```
RANDOM NUMBER SEED WAS -1536
SAMPLE SIZE REQUESTED WAS 20
REPITIONS OF SAMPLING REQUESTED WAS 100
```

```
1 -.2248201
1
     2
          .5194963
1
         2.017076E-02
1
     3
          .2892476
1
1
     5
          .5039074
     6
        -.6579888
1
     7
        -7.678485E-02
1
     8
         .817639
 1
     9
        -.751547
1
     10 -1.217435E-03
 1
     11
          .2407511
     12
           .3215078
 1
           .3680337
 1
     13
 1
     14
          1.353352
 1
     15
           .3950442
 1
     16
           .3534379
 1
     17
         -1.405061
     18
          1.386417
 1
     19
          -.3351373
     20 -.2328126
 1
SAMPLE 1
   MEAN= .1441818
   SOS= 8.387035 N= 20 CORRECTED V= .4414229
 2
     1
          4.855903E-02
     2
          .3045103
 2
 2
     3
          .8718381
 2
     4
         -1.468055
 2
     5
         -.859302
 2
     6
        -.244534
 2
     7
         -1.552927
 2
     8
         -.2409446
     9
          .5322713
 2
 2
     10
          -1.677375
 2
          -.7514218
     11
          -1.038251
 2
     12
 2
     13
          -.1949617
 2
          -1.110046
     14
 2
     15
          -.1706596
 2
     16
          .6479734
 2
          -.4112441
     17
           .4571693
 2
     18
 2
     19
          -.5458564
 2
     20
          -1.323593
SAMPLE 2
   MEAN = -.4363424
   SOS= 11.357 N= 20 CORRECTED V= .5977367
```



```
-.3483107
97
      12
      13
           -.1532237
97
            6.140356E-02
97
      14
            .9914996
97
      15
            1.071523
97
      16
            .8948534
97
      17
           -.8322707
97
      18
            .9580903
      19
97
      20
            .8942671
97
SAMPLE 97
   MEAN= .1711396
                            CORRECTED V= .5916839
   SOS= 11.24199 N= 20
          -.3523787
 98
      2
          -.9466435
 98
 98
       3
          -.8661198
           .9511314
 98
       5
          -.5021839
 98
       6
          -.7183605
 98
 98
       7
           1.306827
 98
       8
           .431532
          -1.084639
 98
       9
       10
          -2.386106
 98
 98
       11
             .6624868
             .4211462
 98
       12
           -.3929444
 98
       13
 98
       14
           -2.081142
           -.1886418
 98
       15
             .3934765
 98
       16
       17
           -.6623733
 98
             .5852647
 98
       18
            -.3208738
 98
       19
 98
       20
            -1.382802
SAMPLE 98
   MEAN = -.3566672
    SOS= 17.75167 N= 20 CORRECTED V= .9342986
           -1.003863
 99
 99
           -.6275403
       2
 99
       3
            .6826761
 99
            .1200453
       4
 99
       5
           -7.134871E-02
           7.569096E-02
 99
  99
       7
           -1.01107
           -.8277139
  99
       8
            .8007606
  99
       9
             .3926594
  99
       10
  99
       11
            -.3319511
             2.14052
  99
       12
       13
            -.3677893
  99
  99
        14
            -.3481696
  99
       15
             .4060895
            -.1998698
  99
        16
        17
             .4894969
  99
```

```
.5335158
99
     18
99
     19
        1.443584
     20 -.3452382
99
SAMPLE 99
  MEAN= 9.752419E-02
  SOS= 12.08611 N= 20 CORRECTED V= .6361111
      1 -1.246749
 100
         2.044941
      2
 100
         .8018891
      3
 100
     4 1.941687
 100
     5 -.4189042
 100
         1.443439
 100
      6
      7
         1.248126
 100
         2.682492
     8
 100
 100
     9 -1.521015
     10 1.03973
 100
          1.197226
 100
     11
      12 -.5914441
 100
      13 -.965593
 100
          5.395073E-02
      14
 100
      15 -.3916252
 100
          .277603
      16
 100
     17
          1.33914
 100
          .801004
     18
 100
          -.3931427
      19
 100
     20 -.6614072
 100
SAMPLE 100
   MEAN= .4340674
   SOS= 26.76395 N= 20 CORRECTED V= 1.408629
```

FREQUENCY DISTRIBUTION OF VARIANCES

LOWER END	UPPER END	REL FREQ
0	. 2	0
. 2	. 4	0
. 4	.6	8.99999E-02
.6	.8	.14
.8	1	.29
1	1.2	.27
1.2	1.4	.11
1.4	1.6	8.99999E-02
1.6	1.8	0
1.8	2	0
2	2.2	0
2.2	2.4	0
2.4	2.6	.01

TOTAL FREQ= .9999999

THERE WERE 100 SAMPLES OF SIZE 20
THE AVERAGE SOS SHOULD EQUAL N-1, OR 19
THE MEAN SOS OVER 100 SAMPLES WAS 18.97739

